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Data consisting of ranks within blocks are considered for randomized complete block 
layouts where treatment effects are expected to be ordered. Ranks with and without ties are 
considered as well as missing values. A small indicative test size study indicates both a 
new test and the Page test, modified by Thas et al. (2012) to easily permit ties, perform 
well. An advantage of the new test is that it can be easily applied to data with missing 
values. Three real examples are given. One of these illustrates a quadratic trend test. 
Comparisons between the new test and the Alvo and Cabilio (1995) extended Page test for 
missing values are given. 
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1. Introduction 
Suppose that we have ranks within blocks, Yij, in a randomized block design. Also suppose that 
if the ranks within blocks are tied then they are given mid-ranks. With t treatments we wish to 
test the null hypothesis of no treatment effects (τi) against ordered alternatives K1: τ1 < τ2 < … 
< τt and K2: τ1 > τ2 > … > τt, in each case with at least one inequality strict. The test of Page 
(1963) is a well-known rank test of the null hypothesis against either K1 or K2. 

Thas et al. (2012) give a simple formula for the Page statistic, L say, which is valid for 
tied and untied data. This is given by 
 

  

 
in which ,  is the mean of the ranks for treatment i, the li are the usual linear 

trend coefficients (for completeness these are given in Appendix A) and c = b(t – 1)/(tV) in 
which V = . For untied data V = (t2 – 1)/12. It is known that L has an 

asymptotic N(0, 1) distribution; see Appendix B. For data with ties we are not aware that use 
of N(0, 1) p-values in small samples have been investigated previously. 

 Here we wish to compare the test based on L with that based on a new statistic, T say, 
derived from the orthogonal trend analysis used in the ANOVA. Kuehl (2000, section 3.3), for 
example, gives details of orthogonal trend analysis. If S2 is the error mean square from a 
randomized block ANOVA of the Yij then an alternative test statistic to L is  

 

T =  
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in which, as usual for ANOVA, T has an asymptotic tdf distribution with df = (b – 1)(t – 1). 
This alternative test statistic mimics the alternative Conover (1999, p.370) gives for the well-
known Friedman test statistic for ranks within blocks. This alternative to the Friedman test 
statistic is also based on the standard ANOVA F test. 

In section 2 we give examples where L and T are calculated. In section 3 we compare 
sizes for L and T using N(0, 1) and tdf critical values respectively. It appears sizes for L are 
close to nominal for all but very small values of b and t. The sizes of T are quite close to 
nominal for all b and t examined. Section 4 extends the discussion of the section 2 examples. 
In section 5 we look at an example where data are tied and there are missing values. The statistic 
T is easily extended to permit the analysis of such data using standard statistical software 
packages. Section 6 briefly compares sizes and powers for an extension of T, denoted by T*, 
with the Alvo and Cabilio (1995) test statistic which is not available in standard statistical 
software packages or described in standard texts. 
 
 
2. Examples 
(i) Toads data (no ties) 

Cabilio and Peng (2008) quote data on heart pressure measurements of toads (toads are 
blocks in the section 1 description) during an induced dehydration period. It was expected that 
mean rankings would decrease over four time periods (these are treatments in our section 1 
description). In our Table 1 we give ranks for the five toads with no missing values. 
 

TABLE 1 
Ranks of heart pressure at four times 

Toad Time 1 Time 2 Time 3 Time 4 
1 1 3 4 2 
2 1 2 3 4 
6 1 2 3 4 
7 2 3 1 4 
8 1 2 4 3 

 
For the ranks in Table 1 L = 2.789 with a one-tailed p-value of 0.003 using the N(0, 1) 

approximation and T = 3.726 with a one-tailed p-value of 0.001 using the t12 distribution. Both 
L and T are highly significant. 

 
(ii) Lemonades data (with ties) 

Thas et al. (2012) consider sensory evaluation rankings for five tasters (blocks) and four 
lemonades (treatments) A, B, C and D where the lemonades were the same except their sugar 
content increased from A to B to C and then to D. It was expected that the rankings, given in 
Table 2, would increase as sugar increased. Tied rankings are allowed. 
 

TABLE 2 
Taster rankings for four lemonades 

Taster A B C D 
1 3 2 1 4 
2 3 1.5 1.5 4 
3 1 4 2 3 
4 3 2 1 4 
5 4 2 2 2 
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TABLE 3 
Estimated test sizes for tests based on L and T for nominal levels of 10%, 5% and 1% and no 

ties 
 L T  L T 
b = 5   b = 10   

t = 3 0.079 0.086 t = 3 0.110 0.110 
 0.040 0.055  0.046 0.049 
 0.007 0.010  0.011 0.011 

t = 5 0.101 0.104 t = 5 0.099 0.103 
 0.051 0.053  0.046 0.053 
 0.007 0.012  0.010 0.011 

t = 7 0.103 0.102 t = 7 0.100 0.102 
 0.048 0.052  0.049 0.051 
 0.009 0.011  0.009 0.011 
      
b = 20   b = 30   

t = 3 0.089 0.093 t = 3 0.110 0.094 
 0.048 0.050  0.051 0.051 
 0.010 0.010  0.008 0.012 

t = 5 0.101 0.102 t = 5 0.098 0.104 
 0.052 0.053  0.051 0.054 
 0.009 0.011  0.010 0.011 

t = 7 0.098 0.100 t = 7 0.099 0.101 
 0.040 0.051  0.051 0.051 
 0.010 0.011  0.010 0.010 

 
 

TABLE 4 
Estimated test sizes for tests based on L and T with ties allowed and for nominal levels of 

10%, 5% and 1% 
 L T  L T 
b = 5   b = 10   

t = 3 0.098 0.099 t = 3 0.099 0.103 
 0.052 0.048  0.050 0.051 
 0.014 0.007  0.011 0.009 

t = 5 0.099 0.102 t = 5 0.100 0.104 
 0.051 0.053  0.049 0.053 
 0.008 0.013  0.010 0.011 

t = 7 0.103 0.103 t = 7 0.103 0.103 
 0.049 0.051  0.049 0.051 
 0.009 0.011  0.010 0.011 
      
b = 20   b = 30   

t = 3 0.099 0.101 t = 3 0.099 0.100 
 0.050 0.050  0.048 0.051 
 0.009 0.010  0.009 0.010 

t = 5 0.103 0.103 t = 5 0.097 0.103 
 0.051 0.053  0.052 0.053 
 0.009 0.011  0.009 0.010 

t = 7 0.101 0.102 t = 7 0.099 0.101 
 0.050 0.051  0.051 0.052 
 0.010 0.011  0.009 0.010 
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For the Table 2 rankings L = 0.408 with a one-tailed p-value of 0.342 using the N(0, 1) 

approximation and T = 0.484 with a one-tailed p-value of 0.319 based on the t12 distribution. 
Neither L nor T is significant at the usual significance levels. 
 
 
3. Test Sizes and Powers 
(i) Test sizes for data without ties 

Simulations, using 100,000 samples were carried out to check the L and T critical values 
based on the N(0, 1) and tdf distributions. Choices of b and t are shown in Table 3. The sizes 
were found using permutation tests and showed that for small b and t the test based on T was 
better approximated by its asymptotic distribution than that based on L. For larger b and t both 
tests had sizes in good agreement with their nominal values. In Appendix B discussion is given 
supporting the use of tdf as an approximate distribution of T. 
(ii) Test sizes for data with ties 

Sizes were calculated as in Brockhoff et al. (2004, section 4 and also the discussion in 
section 6). For each block and treatment one of the scores 1, 2, …, t was randomly assigned 
with probability 1/t. These values were then ranked by block with ties given mid-ranks. This 
was repeated 100,000 times for each b and t combination shown in Table 4. Test sizes were 
close to nominal for the tests based on both L and T. 
(iii) Powers for data without ties 

We now describe a small indicative power study. As with the sizes, the powers were 
based on 100,000 simulations. Alternative (a) had cell probabilities (0.25, 0.25, 0.25, 0.25) for 
treatments 1 and 2 and (0.1, 0.2, 0.3, 0.4) for treatments 3 and 4. The alternative (b) cell 
probabilities were (0.1, 0.2, 0.3, 0.4) for treatment 1, (0.2, 0.2, 0.2, 0.4) for treatment 2 and 
(0.1, 0.1, 0.1, 0.7) for treatments 3 and 4. Alternative (c) cell probabilities were (0.25, 0.25, 
0.25, 0.25) for treatments 1 and 2 and (0.1, 0.1, 0.3, 0.5) for treatments 3 and 4. With no ties 
the powers of the tests based on T and L were very similar. 
 

TABLE 5 
Estimated powers for tests based on L and T for α = 10%, 5% and 1%, b = 8, t = 4 with no 

ties allowed and alternative cell probabilities (a), (b), (c) 
Alternative α% T L 

(a) 10 0.39 0.33 
 5 0.26 0.25 
 1 0.10 0.09 

(b) 10 0.41 0.41 
 5 0.28 0.27 
 1 0.11 0.10 

(c) 10 0.55 0.55 
 5 0.41 0.40 
 1 0.18 0.17 

 
(iv) Powers for data with ties 

The set-up was as for the previous section but ties were allowed. The powers for the 
test based on L were similar to the no ties case, but the powers of the test based on T improved 
on the no ties case, and therefore here on the powers for the test based on L. 
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TABLE 6 
Estimated powers for tests based on L and T for α = 10%, 5% and 1%, b = 8, t = 4 with ties 

allowed and alternative cell probabilities (a), (b), (c) 
Alternative α% T L 

(a) 10 0.42 0.39 
 5 0.28 0.24 
 1 0.11 0.06 

(b) 10 0.49 0.40 
 5 0.35 0.24 
 1 0.14 0.05 

(c) 10 0.61 0.57 
 5 0.47 0.40 
 1 0.23 0.14 

 
 
4. Further Analysis of the Section 2 Examples 
 
(i) Toads data 

The ranks data given in Table 1 are for toads with no missing values. Table 7 shows 
extra data for three other toads. 
 

TABLE 7 
Toads with missing ranked values 

Toad Time 1 Time 2 Time 3 Time 4 
3 - 1 2 3 
4 1 - - 2 
5 1 2 - 3 

 
We can find an extension of T, called T*, for when there are missing values by using 

an ANOVA computer routine that allows for unbalanced data. For example, use the GLM 
command in MINITAB, the RGLM routine in IMSL, the ‘Fit Model’ platform in JMP or the 
‘general linear model’ platform in SPSS. These give an error mean square, S2, as before but 
now with df = (n – 1) – (t – 1) – (b – 1) degrees of freedom where n, the total number of 
observations, is 28 for the extended toad data. Also we define n1 = 7, n2 = 7, n3 = 6 and n4 = 8 
as the number of observations for each of the four times. Moreover we suggest not using , 
the raw means for each time, but rather , the adjusted means given by standard software 
such as that listed above. This gives our T* for missing value data as 
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Notice that if there are no ties then T = T*. Section 6 briefly examines this approximation. Here 
T* takes the value 4.900 with one-sided p-value 0.0001 based on the t17 approximation. This is 
a smaller p-value than that obtained using only the data from complete blocks.  

Another statistic that has been suggested for missing values data when an ordered 
alternative is thought important is the L* statistic of Alvo and Cabilio (1995). However critical 
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values of L* exist only for certain values of t and for certain missing value layouts. When the 
appropriate normal approximation is used with this test statistic we denote the test and test 
statistic by Z. It is clearly more convenient for general use. For data with no missing values Z 
= L. Section 6 compares Z and T*. For the toad data including toads with missing values Z 
takes the value 3.50 and with p-value 0.002. 
 
(ii) Lemonade data 

A more appropriate alternative for the lemonade data might be that as sugar content 
increases taster preference increases and then decreases as the drink goes from not sweet 
enough to too sweet. A quadratic contrast may then be appropriate and Thas et al. (2012) 
suggest the statistic 
 
 

TABLE 8 
Rankings for ordered categories nasal discharge data 

ID Day 1 Day 2 Day 3 Day 4 
1 1.5 1.5 3.5 3.5 
2 2.5 2.5 2.5 2.5 
3 2.5 2.5 2.5 2.5 
4 2.5 2.5 2.5 2.5 
5 1.5 3.5 3.5 1.5 
6 4 2 2 2 
7 3 3 1 3 
8 3 3 3 1 
9 4 3 1.5 1.5 
10 2 2 2 4 
11 3 1 3 3 
12 2 4 2 2 
13 1.5 4 3 1.5 
14 4 2 2 2 
15 - 2.5 2.5 1 
16 1 3 3 3 
17 4 2 2 2 
18 2.5 2.5 2.5 2.5 
19 3 - 2 1 
20 2.5 2.5 2.5 2.5 
21 4 2 2 2 
22 2 2 4 2 
23 3.5 1.5 1.5 3.5 
24 2.5 2.5 2.5 2.5 
25 2.5 2.5 2.5 2.5 
26 2.5 2.5 4 1 
27 4 2 2 2 
28 2.5 2.5 2.5 2.5 
29 1.5 3.5 3.5 1.5 
30 2.5 2.5 2.5 2.5 
31 3 3 3 1 
32 2.5 2.5 2.5 2.5 
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where now d = . The mi values are given in Appendix A. We find Q = 2.191 with an 

N(0, 1) one-tailed p-value of 0.014 and T =  = 2.598 with a one-tailed p-

value of 0.012 based on the t12 approximation. 
 
 
5. An Example with Both Ties and Missing Values 
 

Davis (2002, Chapter 8) shows how to use Cochran-Mantel-Haenszel (CMH) statistics 
to analyze ordinal categorical data with missing values. For patients monitored on four 
consecutive days the ordered categories were no nasal discharge, mild nasal discharge, 
moderate nasal discharge, and severe symptoms. Davis assigns arbitrary scores 0, 1, 2 and 3 to 
the ordered categories and uses these to check for a linear trend over days. A sensible 
alternative is to use ranks. Table 8 shows the ranks for the Davis data. If only patients with 
complete data are used T = – 1.641 with p-value 0.052 using the t87 one-tailed approximation. 
If all the data, that is, patients with complete and incomplete data, are used, then T* = – 2.031 
with p-value 0.023 based on the t92 one-tailed approximation. Again, as for the toad data, it 
seems important to use all the data and not delete incomplete blocks. Section 6 indicates the tdf 
approximation to the T* distribution is quite good, even for small samples. Table 11 in the 
following section indicates Z is not well approximated by an N(0, 1) distribution when there 
are both ties and missing values. Hence we only quote T* probabilities here. 
 
 
6. Sizes and Powers when there is Missing Data 
 
(i) Sizes for data without ties 

We will compare sizes of the tests based on T* and the Z statistic of Alvo and Cabilio 
(1995) when tdf and N(0, 1), respectively, critical values are used. Table 9 gives sizes for three 
missing values layouts which are either (i) the same layout as in the toads example given in 
Cabilio and Peng (2008) or in Alvo and Cabilio (1995), (ii) a layout with two extra missing 
values compared to (i) such that the first five blocks have no missing values, block six has 
ranks for times (treatments) 1 and 2 missing and blocks seven and eight have ranks for times 2 
and 3 missing, (iii) a layout with one less missing value compared to (i) such that the first five 
blocks have no missing values, block six has the rank for time 1 missing, block seven has the 
rank for time 2 missing and block eight has the rank for time 3 missing.  

The sizes in Table 9 are excellent for both T* and Z. Alvo and Cabilio (1995) also noted 
the sizes for Z were good even, as here, in small samples. The sizes were found using 
permutation tests involving 100,000 simulations of samples of eight blocks and four treatments. 
Permutations, like the rankings, were done within blocks as required by the Page test. 
 
(ii) Powers for data without ties 
 

As the sizes were excellent for layouts (i), (ii) and (iii) we now again use the tdf and 
N(0, 1) critical values. This implies the powers in Table 10 will not be biased by differences in 
sizes, which is a problem with some power studies. 
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TABLE 9 
Sizes when there are no ties, eight blocks, four treatments, α = 10%, 5% and 1% and missing 

patterns (i), (ii), (iii) described in the text 
___________________________________________________________________________ 

Missing value pattern α% T* Z 
__________________________________________________________________ 

(i) 10 0.100 0.101 
 5 0.047 0.048 
 1 0.010 0.008 
(ii) 10 0.101 0.104 
 5 0.050 0.046 
 1 0.011 0.008 
(iii) 10 0.101 0.102 
 5 0.052 0.052 
 1 0.011 0.009 

___________________________________________________________________________ 
 

TABLE 10 
Powers when there are no ties, eight blocks, four treatments, α = 10%, 5% and 1%, 
alternatives (a), (b), (c) and missing values patterns (i), (ii), (iii) described in the text 

___________________________________________________________________________ 
Missing value pattern alternative α% T* Z 
_____________________________________________________________________ 

(i) (a) 10 0.36 0.35 
  5 0.22 0.22 

  1 0.08 0.06 
 (b) 10 0.38 0.37 
  5 0.24 0.24 
  1 0.09 0.07 
 (c) 10 0.50 0.50 
  5 0.35 0.35 
  1 0.15 0.13 
 

(ii)  (a) 10 0.35 0.34 
  5 0.22 0.20 

  1 0.08 0.06 
 (b) 10 0.38 0.35 
  5 0.24 0.21 
  1 0.09 0.06 
 (c) 10 0.49 0.47 
  5 0.35 0.31 
  1 0.14 0.10 

 
(iii) (a) 10 0.38 0.36 

  5 0.24 0.23 
  1 0.09 0.07 
 (b) 10 0.39 0.38 
  5 0.26 0.25 
  1 0.10 0.08 
 (c) 10 0.52 0.51 
  5 0.38 0.37 
  1 0.16 0.14 
__________________________________________________________________________________ 
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TABLE 11 
Sizes when there are ties, eight blocks, four treatments, α = 10%, 5% and 1% and missing 

patterns (a), (b) , (c)  
___________________________________________________________________________ 

Missing value pattern α% T* Z 
__________________________________________________________________ 

(a) 10 0.098 0.073 
 5 0.048 0.031 
 1 0.011 0.002 
(b) 10 0.096 0.072 
 5 0.050 0.029 
 1 0.010 0.003 
(c) 10 0.099 0.075 
 5 0.051 0.033 
 1 0.011 0.004 

___________________________________________________________________________ 
 

Although powers were comparable it should be noted that those for the test based on 
T* were never inferior to those for the test based on Z. The powers for layouts (i), (ii) and (iii) 
were similar and missing value data lessened the powers compared to those for the eight blocks 
with no missing values. See Table 5 and 10. 
 
(iii) Sizes for data with ties 

Table 9 gives sizes when there are no ties. Table 11 gives sizes when ties are allowed. 
The tied data was produced using the same technique as in section 3 (ii) above except that now 
not all blocks have t values. When block i has ni values then scores 1, 2, …, ni were produced 
with probabilities 1/ ni. These scores were then ranked using mid-ranks for ties. 

Alvo and Cabilio (1995) did not give an adjustment for ties and so in Table 11 we have 
just used the same Z as for the no ties case except that the numerator now uses mid-ranks rather 
than ranks and the denominator or standard error of the numerator is unadjusted for ties. We 
did not expect Z to have good sizes, and indeed, this was the case. However, as for the no ties 
case, the sizes for T* are, excellent. 
 
(iv) Powers for data with ties 

For every alternative considered the powers for the test based on T* were superior to 
those for the test based on Z. See Table 12. 
 
 
7. Conclusion 
For almost all t and b studied the N(0, 1) approximation to L and the tdf approximation to T 
were excellent. Only for untied data with t = 3 and b = 5 was the normal approximation slightly 
inferior to the tdf approximation, and even then its use is not inappropriate. 

An advantage of the T statistics is that using existing software for unbalanced ANOVA 
gives T*, an easy to calculate extension of T for ranks data with missing values. The use of T 
and T* was illustrated for the real toad and nasal discharge data sets and for artificial lemonade 
data based on actual data from the former CSIRO Food Research Laboratory at North Ryde. 
Use of a quadratic trend test was also illustrated. We note that Z does not apply to data with 
both ties and missing values whereas T* does apply to such data. This is probably the main 
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reason for T* having more power than Z in Table 12 and for T* having better sizes than Z in 
Table 11. However note that in Table 6 T has slightly better power than Z even though the 
Table 4 sizes were similar. Our results indicate that the tests based on T and T* are superior 
alternatives to those based L and Z. 

We thank the referees for constructive comments that improved the paper. 
 

TABLE 12 
Powers when there are ties, eight blocks, four treatments, α = 10%, 5% and 1%, alternatives 

(a), (b), (c) and missing values patterns (i), (ii), (iii) described in the text 
___________________________________________________________________________ 

Missing value pattern alternative α% T* Z 
_____________________________________________________________________ 

(i) (a) 10 0.39 0.34 
  5 0.26 0.20 

  1 0.09 0.04 
 (b) 10 0.45 0.35 
  5 0.31 0.20 
  1 0.12 0.04 
 (c) 10 0.57 0.50 
  5 0.42 0.33 
  1 0.19 0.10 

(ii)  (a) 10 0.38 0.32 
  5 0.25 0.18 

  1 0.09 0.04 
 (b) 10 0.44 0.33 
  5 0.31 0.17 
  1 0.12 0.03 
 (c) 10 0.55 0.47 
  5 0.41 0.30 
  1 0.18 0.08 

(iii) (a) 10 0.40 0.34 
  5 0.27 0.21 

  1 0.10 0.05 
 (b) 10 0.46 0.35 
  5 0.32 0.20 
  1 0.13 0.04 
 (c) 10 0.58 0.50 
  5 0.44 0.34 
  1 0.21 0.10 
___________________________________________________________________________ 
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Appendix A: Linear and Quadratic Coefficients 
 
Linear Coefficients 

t l1, l2, …, lt  

3 – 1, 0, 1 2 
4 – 3, – 1, 1, 3 20 
5 – 2, – 1, 0, – 1, 2 10 
6 – 5, – 3, – 1, 1, 3, 5 70 
7 – 3, – 2, – 1, 0, 1, 2, 3 28 

 
Quadratic Coefficients 

t m1, m2, …, mt  

3 1, – 2, 1 6 
4 1, –1, – 1, 1 4 
5 2, –1, – 2, – 1, 2 14 
6 5, – 1, – 4, – 4, – 1, 5 84 
7 5, 0, – 3, – 4, – 3, 0, 5 84 

 
 
Appendix B: Asymptotic distributions of L and T 
 

To reflect their dependence on the sample size various statistics such as L will be 
denoted by Ln. All limits are as n → ∞; they are either in probability or in law. Now 
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Using results found, for example, in Bickel and Dobson (1977), Vn 
P
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, this having the N(0, 1) distribution, as is well-
known. 
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Now 2
nS , the error mean square, 

P
→  σ2, so Tn 

L
→  constant ∑ =

t

i iiYl
1

, this again having the 
standard normal distribution, as is well-known.  

If the data are normal Tn has the tdf distribution, but that is not the case here, as the data 
are ranks. However the ANOVA is well-known to be robust to its assumptions. Moreover the 
tdf distribution approaches the standard normal as the degrees of freedom increase. So it is 
reasonable to anticipate that Tn approaches normality with the tdf distribution an intermediate 
approximation. This is supported by the simulation reported in section 3. 
 


